P.1

Effect of Elevated CO₂ on CH₄ Emission from Rice Fields

Xunhua Zheng^{1*}, Zhongjun Xu¹, Yuesi Wang¹, Jiangguo Zhu², Yao Huang¹

¹Institute of Atmospheric Physics, CAS, PRC ²Institute of Soil Sciences, CAS, PRC

* Corresponding to:

LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P.R. China. E-mail: zxh@mail.iap.ac.cn

CAS-DOE Meeting, October 39-30, 2003, Beijing

How elevated CO₂ impacts GHGs exchanges over natural or managed terrestrial ecosystems?

Direct Objectives of FACE Study on Exchange of Trace Gases

The location of FACE site at Wuxi and a former trace gas observation site at Suzhou

CH₄ emission

Observed CH₄ emission fluxes from ricewheat rotation fields (2001. 6. 25 ~ 2003. 9. 29)

N₂O emission

Observed N₂O emission fluxes from ricewheat rotation fields (2001. 6. 25 ~ 2003. 9. 29)

NO emission

Observed NO emission fluxes from rice-wheat rotation fields

 $(2001, 12, 16 \sim 2003, 6, 5)$

CO₂ emission due to total ecosystem respiration (TER)

Observed CO₂ emission fluxes of TER from rice-wheat rotation fields

(2001. 6. 25 ~ 2003. 9. 29)

CO₂ emission due to soil respiration (Rs)

Observed CO₂ emission fluxes of Rs from rice-wheat rotation fields

(2002. 10. 28 ~ 2003. 9. 29)

CO₂ emission due to soil heterotrophic P. respiration (Rh)

Observed CO₂ emission fluxes of Rh from rice-wheat rotation fields

 $(2002, 10, 28 \sim 2003, 9, 29)$

CO emission

Observed CO₂ emission fluxes during the paddy rice season

 $(2003.7.21 \sim 9.29)$

Soil CO₂ and N₂O concentration profiles P.1

Observed CO₂ and N₂O profiles during upland period

P.1

Observed in Japan (Inubushi et al., 2002)

FACE effect on CH₄ emission in the 1st and 2nd year after suddenly CO₂ elevation

FACE effect on CH₄ emission in the 3rd P.1 year after suddenly CO₂ elevation

Seasonal total CH₄ emission increases versus organic carbon input at a higher rate under Ambient than under FACE condition.

At a low N application rate, the effect of elevated CO_2 on seasonal CH_4 emission negatively correlated with organic carbon application rate, which could be described with a linear function.

The significant level of FACE effect on CH₄ emission is not only associated with organic carbon application rate, but also associated with the level of fertilizer nitrogen application.

At a usual nitrogen application rate, does the FACE effect on CH₄ emission also linearly vary versus organic carbon application rate? No clear, yet!

Assuming the dashed lines for No N, UN and HN (high N) are true, then a function, with the N and C application rates being the independent variables, might be established:

 $\overline{\text{FE}_{200}} = -0.0004 \text{N} \cdot \text{C} - 0.037 \text{C} + 0.0015 \text{N}^2 + 0.57 \text{N} + 24.5$

Effe	ect							Orga	nic ca	arbor	l (kg C	c ha ⁻¹)					
(%	(0)	0	200	400	600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000
	0	25	17	10	3	-5	-12	-19	-27	-34	-41	-49	-56	-63	-71	-78	-85
	20	36	27	19	10	1	-8	-17	-26	-35	-44	-53	-62	-71	-80	-88	-97
	40	50	39	28	18	7	-3	-14	-24	-35	-45	-56	-66	-77	-87	-98	-108
	60	64	52	40	27	15	3	-9	-21	-33	-45	-57	-70	-82	-94	-106	-118
	80	79	66	52	38	24	11	-3	-17	-30	-44	-58	-72	-85	-99	-113	-126
la-1	100	96	81	65	50	35	19	4	-11	-27	-42	-57	-73	-88	-103	-118	-134
N ha-1)	120	114	97	80	63	46	29	12	-5	-21	-38	-55	-72	-89	-106	-123	-140
(kg	140	133	114	96	77	59	40	22	3	-15	-34	-52	-71	-89	-108	-126	-145
	160	153	133	113	93	73	53	33	12	-8	-28	-48	-68	-88	-108	-128	-148
Z	180	175	153	131	110	88	66	44	23	1	-21	-42	-64	-86	-108	-129	-151
Zer	200	198	174	151	128	104	81	58	34	11	-12	-36	-59	-82	-106	-129	-152
ertili	220	221	196	172	147	122	97	72	47	22	-3	-28	-53	-78	-103	-127	-152
er	240	247	220	193	167	140	114	87	61	34	8	-19	-45	-72	-98	-125	-151
H	260	273	245	217	188	160	132	104	7 6	48	20	-8	-37	-65	-93	-121	-149
	280	300	271	241	211	181	152	122	92	63	33	3	-27	-56	-86	-116	-145
	300	329	298	266	235	204	172	141	110	78	47	16	-16	-47	-78	-109	-141

The FACE effect on CH_4 emission from rice paddy fields might be positively up to 300% or negatively down to -150%, depending upon the combination of N and C application.

Under the high organic C application level, the effects of organic C supplies on CH_4 emission usually override the FACE effects. The overriding effects are especially more obvious when N supplies are limited.

The vascular transportation capacity of transferring CH_4 from under ground to the atmosphere through rice plants is not enhanced due to elevated CO_2 .

These two figures are provided by Jianguo Zhu and Zubin Xie (Institute of Soil Sciences, CAS)

CH₄ production is stimulated due to positive FACE effects on root production and exudation.

Mechanically, the positive FACE effect on CH₄ emission is mainly due to enhancement of root production and exudation. Vascular transportation is not important for the positive FACE effect on CH₄ emission from paddy rice fields.

Further study at the present experimental platform

Further study with modeling approaches: Adapting available model to FACE conditions.

In summary

- ➤ At a low level of N application, the FACE effect on seasonal CH₄ emission is negatively and linearly correlated with organic carbon application rate.
- The significant level of FACE effect on CH_4 emission is associated with the level of fresh organic matter application as well as the level of fertilizer nitrogen application.
- ➤ The positive FACE effect on CH₄ emission is mainly due to enhancement of root production and exudation. Vascular transportation is not important for the positive FACE effect on CH₄ emission from paddy rice fields.
- Further experimental and modeling investigation on the FACE effects on CH₄ emission from paddy rice fields are expected.

